শ্রেণিকৃত (Grouped) ও অশ্রেণিকৃত (Ungrouped) তথ্যের ক্ষেত্রে পরিমিত ব্যবধান (Measures of Central Tendency) এবং ভেদাংক (Measures of Dispersion) দুটি গুরুত্বপূর্ণ পরিমাপ যা পরিসংখ্যানের ক্ষেত্রে ব্যাপকভাবে ব্যবহৃত হয়। এগুলি আমাদের ডেটাসেটের গড় বা কেন্দ্রীয় প্রবণতা এবং তার বিস্তার বা বৈচিত্র্য বোঝাতে সাহায্য করে।
শ্রেণিকৃত তথ্য হলো সেই ধরনের তথ্য যেখানে ডেটা গোষ্ঠীতে বা শ্রেণীতে ভাগ করা থাকে। এই ধরনের তথ্য সাধারণত ফ্রিকোয়েন্সি ডিস্ট্রিবিউশন বা হিস্টোগ্রাম আকারে উপস্থাপন করা হয়।
পরিমিত ব্যবধানের মধ্যে সবচেয়ে গুরুত্বপূর্ণ গড় (Mean), মধ্যক (Median), এবং মধ্যম মান (Mode) থাকে। শ্রেণিকৃত তথ্যের জন্য গড় এবং মধ্যক বের করার জন্য ফর্মুলা কিছুটা পরিবর্তিত হয়।
গড় (Mean)
শ্রেণিকৃত তথ্যের গড় বের করার জন্য, শ্রেণীগুলির কেন্দ্রীয় মান (Class Mark, xi) এবং তাদের ফ্রিকোয়েন্সি (fi) ব্যবহার করা হয়:
Mean=∑fixi∑fi
যেখানে:
মধ্যক (Median)
শ্রেণিকৃত তথ্যের মধ্যে মধ্যক নির্ণয় করতে, মোট সংখ্যক ডেটা (N) এর অর্ধেকের সমান অবস্থান খুঁজে বের করা হয়। তারপর শ্রেণী এবং তার মধ্যক মান ব্যবহার করে গণনা করা হয়।
Median=L+(N2−Ff)×h
এখানে:
মধ্যম মান (Mode)
শ্রেণিকৃত তথ্যের জন্য মোড (Mode) নির্ণয় করতে, সবচেয়ে বেশি ফ্রিকোয়েন্সি সম্পন্ন শ্রেণী চিহ্নিত করা হয়, এবং তা থেকে মোড বের করা হয়।
Mode=L+(f1−f02f1−f0−f2)×h
এখানে:
বিচ্যুতি (Variance)
শ্রেণিকৃত তথ্যের জন্য বিচ্যুতি বের করতে, প্রথমে শ্রেণির গড় (Mean) বের করতে হয়, তারপর প্রতিটি শ্রেণীর ফ্রিকোয়েন্সি এবং কেন্দ্রীয় মান ব্যবহার করে ভেদাংক নির্ণয় করা হয়।
Variance=∑fi(xi−μ)2∑fi
এখানে:
প্রমিত বিচ্যুতি (Standard Deviation)
প্রমিত বিচ্যুতি বিচ্যুতির বর্গমূল। এটি ডেটার বিস্তার বা বৈচিত্র্য পরিমাপ করতে ব্যবহৃত হয় এবং এর একক ডেটার সাথে সামঞ্জস্যপূর্ণ থাকে।
Standard Deviation=√∑fi(xi−μ)2∑fi
অশ্রেণিকৃত তথ্য হলো সেসব তথ্য, যেখানে ডেটা শ্রেণীতে বিভক্ত করা হয় না এবং প্রতিটি ডেটা পয়েন্ট আলাদাভাবে বিবেচিত হয়। সাধারণত এই ধরনের ডেটাতে পরিসংখ্যান পরিমাপ সহজ হয়।
গড় (Mean)
গড় বের করতে, সব ডেটা পয়েন্টের যোগফল ভাগ করা হয় ডেটা পয়েন্টের সংখ্যা দিয়ে:
Mean=∑xiN
এখানে:
বিচ্যুতি (Variance)
অশ্রেণিকৃত তথ্যের বিচ্যুতি বের করার জন্য, প্রথমে গড় বের করে তারপর প্রতিটি ডেটা পয়েন্টের গড় থেকে তার বিচ্যুতি বের করা হয়:
Variance=∑(xi−μ)2N
প্রমিত বিচ্যুতি (Standard Deviation)
প্রমিত বিচ্যুতি হলো বিচ্যুতির বর্গমূল, যা ডেটার বৈচিত্র্য এবং বিস্তার পরিমাপ করে:
Standard Deviation=√∑(xi−μ)2N
উপসংহার
শ্রেণিকৃত এবং অশ্রেণিকৃত তথ্যের জন্য পরিমিত ব্যবধান এবং ভেদাংক নির্ণয়ের পদ্ধতিতে কিছু পার্থক্য থাকে, তবে দুই ক্ষেত্রেই গড়, মধ্যক, মোড, বিচ্যুতি, এবং প্রমিত বিচ্যুতি এর মাধ্যমে তথ্যের কেন্দ্রীয় প্রবণতা এবং বিস্তার বিশ্লেষণ করা হয়।
Read more
আমাদের অল-ইন-ওয়ান মোবাইল অ্যাপের মাধ্যমে সীমাহীন শেখার সুযোগ উপভোগ করুন।
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago
Lorem ipsum dolor, sit amet consectetur adipisicing elit. Ducimus nihil, quo, quis minus aspernatur expedita, incidunt facilis aliquid inventore voluptate dolores accusantium laborum labore a dolorum dolore omnis qui? Consequuntur sed facilis repellendus corrupti amet in quibusdam ducimus illo autem, a praesentium.
1 hour ago